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As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Al-
though a variety of remote sensing based approaches have been developed and applied to Landsat mission im-
agery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at
fine spatial scales (≤5 m) from very-high-resolution (VHR) data. We assessed a 432 ha forest fire that occurred
in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent
ecosystem in the northeastern United States. The mapping of forest burn severity was explored here at fine spa-
tial scales, for thefirst timeusing remotely sensed spectral indices and a set ofMultiple Endmember SpectralMix-
ture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2)
imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the
sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m
color aerial ortho-photos; then, we validated the burn severitymapping of geo-referenced dominant tree crowns
(crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-
photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess
forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accu-
racy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity
ratings (i.e. Geo-Composite Burn Index (CBI)). This work highlights that forest burn severity mapping from VHR
data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important
since most ecological processes associated with fire effects vary at the b30 m scale and VHR approaches could
significantly advance our ability to characterize fire effects on forest ecosystems.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Fire is a primary disturbance agent, driving changes in vegetation
carbon stocks and shaping ecosystems, as well as influencing the
temporal variability in carbon, water and energy fluxes (Bowman
et al., 2009; Flannigan et al., 2000; Smith et al., 2016; Sugihara et
al., 2006; Werf et al., 2010). In Atlantic coastal Pine Barrens ecosys-
tems, a unique but imperiled ecosystem in the northeastern United
States, fire-related management practices including prescribed fire
and ecologically sensitive wildfire management must play a key
role in restoration and preservation of the hydrological and
ecological integrity of these ecosystems (Kurczewski and Boyle,
2000; Jordan et al., 2003). Discrimination of the severity of fire is
thus one of the central questions in ecology for examining fire effects
on key ecological processes (e.g. tree mortality, post-fire recovery,
and intra-species/inter-species competition), and is especially im-
portant for fire-related forest management (Frolking et al., 2009;
Lentile et al., 2006; Quintano et al., 2013; Sugihara et al., 2006). In
wildfire research, the word ‘severity’ is used to refer the magnitude
of change (e.g. extent of vegetation removal, soil exposure, and soil
color alteration), caused by fire (Lentile et al., 2006). The Composite
Burn Index (CBI) and its modified version GeoCBI have been widely
used as means for ground measurements of fire severity (De Santis
and Chuvieco, 2009a; Key and Benson, 2006). As an operational
tool, (Geo)CBI visually assesses the magnitude of change by fire in
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five strata (soils, understory vegetation, mid-canopy, overstory, and
dominant overstory vegetation) and integrates these for an overall
plot level burn severity rating between zero (unburned) and three
(highest severity) (De Santis and Chuvieco, 2009a; Key and Benson,
2006). Although often used interchangeably (Keeley, 2009), a dis-
tinction exists between the term burn severity and fire severity, as
suggested by Lentile et al. (2006): fire severity refers to short-term
(e.g. about within one year following the fire) effects on the local en-
vironment, and burn severity refers to both short-term and long-
term (up to ten years) effects, including ecological responses (e.g.
vegetation recovery). In this study we focus on burn severity given
the temporal period of study and scales of interest. Following
Lentile et al. (2006) we define three levels of burn severity and use
these throughout: consistent with traditional field interpretation of
severity in forest ecosystems (Lentile et al., 2006; Veraverbeke et
al., 2012) burned sites with N50% green crowns were classified as
low severity, those with N50% brown and defoliated (bald) crowns
as moderate severity, and those with N50% black (charred) or burned
crowns as high severity (Fig. 1)

Compared with time and labor intensive field sampling, remote
sensing provides a convenient and consistent way for mapping burned
areas or assessing burn severity across large areas (Brewer et al., 2005;
Lentile et al., 2006;White et al., 1996). Over the past three decades, a va-
riety of remote sensing-based approaches have been developed and
widely applied to Landsat mission imagery to infer burn severity at
30 m spatial resolution (Frolking et al., 2009; Lentile et al., 2006; Jin
and Sader, 2005; White et al., 1996). These remote sensing-based ap-
proaches for assessing burn severity include remotely sensed spectral
indices (SIs, e.g. Lu et al., 2015; Miller et al., 2009; Norton et al., 2009),
radiative transfer models (RTM, e.g. Chuvieco et al., 2006; De Santis et
al., 2009b), and linear spectral unmixing analysis (LSMA, e.g. Quintano
et al., 2013; Riaño et al., 2002). While these remote sensing-based
Fig. 1.Definitions of three burn severity levels and unburned classes used in this study. The back
of validation points (U (136), L (131), M (190), and H (50) for accuracy assessment of forest bu
Section 3.5). (For interpretation of the references to color in this figure legend, the reader is re
approaches do have some important limitations (for more details see
Lentile et al., 2009 for the limitations of an NBR or other similar spectral
indices based methods), the differenced Normalized Burn Ratio (dNBR,
Key and Benson, 2006; Miller and Thode, 2007) and other spectral indi-
ces (Epting et al., 2005; Miller and Thode, 2007; VanWagtendonk et al.,
2004) have been used to assess burn severity across the United States
starting as early as 1984 with the Monitoring Trends in Burn Severity
Project (MTBS, http://www.mtbs.gov/; Eidenshink et al., 2007). While
some previous work suggests the use of an RTM approach, which
provides a more physically-based method to estimate burn severity
from imagery (Chuvieco et al., 2006; De Santis et al., 2009b), others
suggest LSMA is sufficient to assess burn severity (Lentile et al.,
2009; Quintano et al., 2013; Smith et al., 2007). LSMA and similar
may also be more easily scalable than RTM approaches. LSMA as-
sumes that the reflectance of each mixed pixel can be linearly
decomposed by a set of spectrally distinct components (i.e.
endmembers) and thus the abundance of endmembers present in
that pixel can be estimated (Drake et al., 1999). Recently an expand-
ed version of the standard LSMA, the Multiple Endmember SMA or
MESMA (Roberts et al., 1998) has been explored to map burn sever-
ity (Fernandez-Manso et al., 2016; Quintano et al., 2013). Compared
to the typical LSMA technique, MESMA accounts for endmember
within-class spectral variability and overcomes the limitation of
using the same number of endmembers to model all pixels
(Fernandez-Manso et al., 2016; Quintano et al., 2013).

These remote sensing-based approaches have proven effective for
fire monitoring at larger spatial extents (i.e. ≥30 m), but fire effects on
forest ecosystems show strong landscape heterogeneity, particularly
for wildfires that are not fully stand-replacing or produce a patchy
post-fire landscape. As such, post-fire forest structural characteristics
and the fire-induced ecological effects often vary at fine spatial scales
(≤5 m), and burn severity maps at 30 m (i.e. MTBS) are still too coarse
groundphoto is the post-fire 0.10m color aerial ortho-photos in 2012. Spatial distributions
rn severity mapping at the sub-crown scale are also shown on the fire perimeter map (see
ferred to the web version of this article.)

http://www.mtbs.gov/
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to capture the full ecological effects of fire on ecosystems (Holden et al.,
2010; Morgan et al., 2014). Increased spatial resolution allows for the
improved understanding of plant responses to fire impacts, accurate
monitoring of post-fire recovery and ecosystem resilience at a scale rel-
evant to post-firemanagement or the organisms or system being inves-
tigated, while the typical coarse resolution results in inadequate
characterization of fire effects in many ecosystem process models
(Holden et al., 2010; Morgan et al., 2014; Sparks et al., 2016; Whitman
et al., 2013). Therefore, there is a significant need to explore approaches
that can map burn severity at fine spatial scales in fire-prone or depen-
dent ecosystems.

The recent increase in the availability of VHR data provides an op-
portunity to assess forest burn severity at fine spatial scales (e.g.
Arnett et al., 2015; Chen et al., 2015a; Dragozi et al., 2016; Holden et
al., 2010; Mitri and Gitas, 2006; Mitri and Gitas, 2008). For example,
using 1-m post-fire IKONOS imagery, Mitri and Gitas (2008) mapped
object-oriented burn severity in open Mediterranean forests. Chen et
al. (2015a) also conducted an object-oriented burn severity assessment
using a high-spatial (4 m) and high-spectral (50 bands) resolution sat-
ellite imagery in diseased forests. While successful, these studies uti-
lized an object-oriented approach, which are highly computationally
expensive and often not easily scalable. Other recent studies have
highlighted that a pixel-based method can also be used to assess forest
burn severity with VHR data (Arnett et al., 2015; Dragozi et al., 2016;
Holden et al., 2010). For example, Holden et al. (2010) found that a
3 m QuickBird-derived differenced spectral index from pre-fire to
post-fire (i.e. dNDVI, Table 3) showed an improved performance over
30 m Landsat-based dNBR for estimating ground burn severity (R-
square = 0.82 and R-square = 0.78 respectively). However, spatial
scales between ground measurements of burn severity that cater to
≥30 m pixels and the fine scale satellite measurements (≤5 m) in
these past studies show the important mismatch between current ap-
proaches andwhich need revised techniques for VHR imagery. Further-
more, to our knowledge there have not been any previous efforts to
explore whether the pixel-based method from VHR data can effectively
and consistently map burn severity across different tree species or
across spatial scales (i.e. from sub-crown to crown to inter-crown).

We aim to use VHR imagery and a combination of SIs andMESMA to
map forest burn severity at fine spatial scales in a Pine Barrens ecosys-
tem (see Methods section). Specifically, we explored: 1) the utility of
multiple (N5) SIs for discriminating burned effects at the sub-crown
scale. 2) the performance of MESMA fraction images combined with a
targeted spectral index from VHR data to map forest burn severity
across a fire-prone landscape. We addressed the following questions:
1) does the performance of SIs used in discriminating burned effects
vary across different species (i.e. oak and pine) in this ecosystem? And
2) is the burn severity mapping result consistent across spatial scales
(i.e. from sub-crown to crown to inter-crown)?
Table 1
List of data used in this study.

Name Spatial resolution D

Remotely sensed data
WorldView-2 (WV-2) imagery 2 m for multi-spectral bands and

0.5 m for panchromatic band
Ju

NASA Goddard's LiDAR, Hyperspectral and
Thermal (G-LiHT) data

1 m Ju

Post-fire aerial color ortho-photos 0.10 m M

Ancillary data
Plot-based forest inventory measurements 15 m by 15 m M
MTBS fire perimeter and burn severity map 30 m Pr

on
M

Post-fire ecological monitoring photos N.A. A
USGS DEM 10 m N
2. Materials

Multiple remotely sensed and ancillary data were used in this study
(Table 1). In this section, we first introduce our study area (see Section
2.1) followed by the description of the remotely sensed data and field
data collections (see Section 2.2 and Section 2.3).

2.1. Study area

Our study area was located within the Long Island Central Pine Bar-
rens Region within the grounds of the Brookhaven National Laboratory
(BNL) and adjacent lands in Suffolk County, New York (Fig. 2). The Na-
ture Conservancy Commission (TNC) has identified Long Island Pine
Barrens as a critical habitat with the core area of 21,266 ha protected
by Long Island Pine Barrens Protection Act. This region has a moder-
ate-humid climatewith evenly-distributed annual precipitation: annual
precipitation is approximately 1200 mm; annual daily mean tempera-
ture is −4.8 °C in January and 21.9 °C in July (Kurczewski and Boyle,
2000). The sandy-flat soils of this region support pine-oak-heath wood-
land (Whittaker and Woodwell, 1969). Pitch pine (Pinus rigida) is the
primary species. Oak species consist of white oak (Quercus alba L.) and
scarlet oak (Quercus coccinea); smaller numbers of black oak (Quercus
velutina Lam.) are also present. In addition, two main shrub species —
huckleberry (Gaylussacia baccata K. Koch) and blueberry (Vaccinium
spp.) — have an inverse canopy cover relationship with tree species
(Reiners, 1967).

The 432 ha Crescent Bow fire occurred on April 9, 2012 in the study
area (Fig. 2). Post-fire ecological monitoring at point locations within
burned areas of BNL has been conducted since the fire. We took digital
photos at twenty-three point locations and recorded the photo-view
bearings starting two days following the fire (Fig. 2). We revisited the
twenty-three point locations and took digital photos at the same
photo-view bearings at one-month intervals during the first six months
following fire, then in July of each subsequent year. In addition to the
photo-view bearing, each photo collected had an associated GPS loca-
tion and time at which the photo was taken.

2.2. Remotely sensed data

Satellite VHR imagery (Table 2) covering the study area was ac-
quired by WorldView-2 (WV-2) spaceborne platform. WV-2 imagery
was available prior to the wildfire on July 17, 2011. Following the wild-
fire, WV-2 imagery was acquired on September 13, 2012. Only four
multi-spectral bands (blue, green, red, and near-infrared2 (NIR2))
were available for the pre-fire WV-2 imagery, due to the data policy of
the National Geospatial Intelligence Agency's NextView license agree-
ment. We also acquired NASA Goddard's LiDAR, Hyperspectral and
Thermal (G-LiHT; Cook et al., 2013) data on June 15, 2015 but this
ata acquisition time Usage

ly 17, 2011 and September 13, 2012 Burn severity assessment

ne 15, 2015 Data preprocessing

ay 3, 2012 Reference data for burn severity
assessment

ay 2016 Burn severity assessment
e-fire Landsat Thematic Mapper (TM) imagery
May 1, 2010; Post-fire Landsat Thematic

apper Plus (ETM+) imagery on April 28, 2012

Burn severity assessment

pril 2012 to July 2016 Assistance
.A. Data preprocessing



Fig. 2. The study area located within Long Island Central Pine Barrens Region around Brookhaven National Laboratory (BNL) and adjacent areas. The background image is a false color
composite of WorldView-2 (WV-2) imagery (near-infrared2 (NIR2)-red-green bands) on July 17, 2011 before the 2012 Crescent Bow fire. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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imagery only partially covered the study burned area (Fig. 2). G-LiHT
data provides co-registered hyperspectral and LiDAR measurements
at high resolutions for environmental studies (Cook et al., 2013). For
this study we used the standard G-LiHT at-sensor reflectance prod-
uct, which was deemed sufficient once we determined atmospheric
effects were found to be negligible given the sky conditions and
lower altitude of collection during overflight. In addition, we ac-
quired a one-month post-fire 0.10 m ortho-rectified color aerial pho-
tography in 2012 covering the burned areas from the New York
Statewide Digital Orthoimagery Program (http://gis.ny.gov/).

2.3. Field data collection

In the spring of 2016, we collected forest inventory data derived
from 15 m by 15 m fixed-area field plots we established within and
around the burn perimeter (Fig. 2, see Section 3.5). A stratified sampling
design was used to capture the variations in burned effects across the
study area. Our stratification was based on the moderate-resolution
Table 2
Technical specifications of the WV-2 imagerya.

Spectral resolution (nm) Panchromatic 450–800
Coastal 400–450
Blue 450–510
Green 510–580
Yellow 585–625
Red 630–690
Red edge 705–745
Near-infrared1 (NIR1) 770–895
Near-infrared2 (NIR2) 860–1040

Spatial resolution (m) Panchromatic 0.5
Multi-spectral 2

a The available bands for the pre-fire imagery in this study is in italics.
MTBS burn severity map and we established and measured five plots
within each strata of theMTBS burn severitymap (unburned, low,mod-
erate, and high), with a total of twenty plots. Four years post-fire we ob-
served that effects caused by fire (e.g. standing dead trees with burn
scars, falling trunks on the ground, open canopy, sparse resprout),
were still persistent; unburned areas (e.g. no burn scar on the tree
trunks, closed canopies) were also easy to discern in the field. At each
plot for all trees with N2.5 cm diameter at breast height (DBH), we re-
corded the DBH, species, crown condition (vigor, defoliation, burned
or dead), crown position (dominant, co-dominant, suppressed, or un-
derstory), canopy height, and crown base height (if applicable). Under-
story species cover and height, as well as canopy cover, were estimated
and recorded at 3m intervals along four transects in the four cardinal di-
rections. Digital photos were taken from the center of each plot to the
four cardinal directions to record vegetation structure and soil condition
information. Individual tree coordinates and plot centers were recorded
with a hand-held decimeter-level differential global positioning system
(DGPS, Trimble Geo7x). After differential corrections, the final accuracy
of the horizontal position of the sample points was 0.3 m on average.

3. Methods

Our workflow (Fig. 3.) was composed of the following steps: im-
agery pre-processing (see Section 3.1), the separability analysis of
SIs (see Section 3.2), the MESMA procedure (see Section 3.3), burn
severity classification (see Section 3.4), and accuracy assessment
(see Section 3.5).

After pre-processing WV-2 pre and post-fire images, multiple SIs
were calculated. The separability of various SIs in discriminating burned
and unburned areas were then compared. Third, as only four bands
were available for the pre-fire WV-2 imagery, MESMAwas implement-
ed only on the post-fireWV-2 imagerywherewe had eight bands avail-
able. A spectral library was built and image endmembers were included

http://gis.ny.gov


Fig. 3. Flowchart of methodology.
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as candidate endmembers (Section 3.4). After selecting optimal
endmembers, fraction images were calculated. Fourth, based on the
targeted spectral index and fraction images as well as theMTBS fire pe-
rimeter, we produced a burned mask and classified burned pixels into
three burn severity levels (L, M, and H) using a Random Forests (RF) ap-
proach. Finally, the accuracy of the burn severity map was evaluated
across spatial scales (sub-crown, crown, and inter-crown)

3.1. Imagery pre-processing

Pre-processing of the remotely sensed data included ortho-rectifica-
tion, re-projection, radiance conversion, data fusion, co-registration,
inter-calibration, and subsetting. All paired panchromatic and multi-
spectral band VHR images were retrieved from the DigitalGlobe archive
as level 1B (L1B) data through the NASA-NGA Commercial Archive data
portal (http://cad4nasa.gsfc.nasa.gov/). L1B imagery had been radio-
metrically and sensor corrected, but not projected to a plane using a
map projection or datum. As a result, all WV-2 images were first
ortho-rectified using a 10 m USGS digital elevation model (DEM) with
the rational polynomial coefficients (RPCs) supplied for each image
and projected to Universal Transverse Mercator coordinate system
(UTM, Zone 18 North,World Geodetic System 1984; Fig. 2). To facilitate
bi-temporal analysis,WV-2 images in 2011 and 2012 aswell as 2015 G-
LiHT imagery were co-registered to the post-fire 0.10 m aerial color
ortho-photograph in 2012. The co-registration error, i.e., Root Mean
Square Error (RMSE), was within 1 m, using 38 ground control points
and second order polynomial transformation and nearest neighbor re-
sampling. After converting to the at-sensor radiance with the supplied
ImageMetaData (IMD) file, both of the 2mmulti-spectralWV-2 images
were fused with the paired 0.5m panchromatic WV-2 images to gener-
ate pan-sharpened 1 m WV-2 images using Gramm-Schmidt Spectral
Sharpening (GSPS) method, consistent with the spatial resolution of
the corresponding G-LiHT data. The GSPS method is able to preserve
spectral information of the multi-spectral imagery, while enhancing
the spatial resolution (Cho et al., 2015; Klonus and Ehlers, 2009).

Previous post-fire multi-temporal analysis has shown that
performing a relative normalization correction using Iteratively Re-
weighted Multivariate Alteration Detection (IR-MAD) method can
produce more consistent temporal reflectance response than abso-
lute atmospheric corrections, when processing time-series imagery
with spatial and temporal consistence (Schroeder et al., 2006). As a
result, inter-calibration was performed between the G-LiHT at-

http://cad4nasa.gsfc.nasa.gov
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sensor reflectance image and the pan-sharpened 2011 and 2012WV-
2 images using IR-MAD method for radiometric normalization, in-
stead of absolute atmospheric corrections (Canty and Nielsen,
2008). As a radiometric normalization method, IR-MAD method fits
a linear regression model for each spectral band, on the basis of bi-
temporal invariant pixels by iterative canonical correlation (Canty
and Nielsen, 2008). Before the inter-calibration, G-LiHT at-sensor re-
flectance image was used to simulate multispectral WV-2 imagery,
according to the sensor response function in ENVI 5.3 (http://www.
harrisgeospatial.com/).

3.2. The separability analysis of SIs in discriminating burned effects

To assess the separability of SIs in discriminating burned effects from
VHR across different species (i.e. oak and pine), we calcualted SIs from
the bi-temporal WV-2 imagery in 2011 and 2012, respectively. Then,
we manually extracted unburned and burned pixels of different pre-
fire canopy species composition (i.e. pine and oak) directly on the bi-
temporal WV-2 imagery from the field inventory data. Finally, the sep-
arability analysis of SIs was perfomed.

3.2.1. SIs calculations
Although often lacking the shortwave-infrared band, SIs analysis

from VHR data has shown promise for improving assessments of burn
severity (Arnett et al., 2015; Dragozi et al., 2016; Holden et al., 2010).
SIs are typically used to reduce effects of topography, viewing angle,
sun angle, and radiometric consistency for change detections of bi-tem-
poral imagery (Hart and Veblen, 2015). After imagery pre-processing,
we calculated a range of SIs (i.e. NDVI, EVI, SAVI, MSAVI, BAI, and RVI,
Table 3) that have been used to map fire effects and burned areas (e.g.
Chuvieco et al., 2002; Schepers et al., 2014). RGI and BR have been
used previously as an indicator of bare ground during the detection of
beetle-induced tree mortality (Coops et al., 2006; Hart and Veblen,
2015), and we expected they could be used to identify increased visible
bare ground within the burned areas as a result of fire-caused canopy
loss.

The changes in SIs from post-fire to pre-fire were calculated to char-
acterize the temporal change in those pixels identified as containing
well-lit tree foliage in the 2011 image. For these SIs, the changes were
calculated as Eq. (1).

Δ SI ¼ SIpos‐fire−SIpre‐fire ð1Þ

whereΔSI is the change in the spectral index from the post-fire image to
pre-fire image. The difference in viewing geometry and illumination
conditions are some of the challenges in change detection of individual
trees through time using bi-temporal VHR imagery (Wulder et al.,
2008). In this study, we chose to isolate image pixels containing well-
lit vegetation from those containing shade. Specifically, we first masked
Table 3
Spectral indices used to classify tree species and assess forest burn severitya.

Spectral Index Abbreviation

Normalized Difference Vegetation Index NDVI

Enhanced Vegetation Index EVI

Soil Adjusted Vegetation Index SAVI

Modified Soil Adjusted Vegetation Index MSAVI

Burned Area Index BAI

Red-Green Index RGI

Blue-Red Index BR

Ratio Vegetation Index RVI

a R: WV-2 red band; B: WV-2 blue band; G: WV-2 green band; NIR2: WV-2 near-infrared2
apparent cloud and cloud shadow areas manually from the WV-2 im-
ages in 2011 and 2012. Then, wemasked the 2011WV-2 imagery to re-
tain well-lit vegetation pixels with an NDVI ≥0.70 and at-sensor NIR
reflectance ≥10% for subsequent analysis (Marvin et al., 2016).

3.2.2. The separability analysis
A separability index (Eq. (2)) was used to estimate the effectiveness

of the eight ΔSI to discriminate burned and unburned class.

M ¼ jμb−μuj
σb þ σu

ð2Þ

where μb and μu are the mean values of the considered ΔSI of burned
and unburned class, and σb and σu are the corresponding standard de-
viations. The separability index has been frequently used to assess the
degree of discrimination in fire ecology studies for both broadband
and imaging spectroscopy sensors (e.g. Pereira, 1999; Schepers et al.,
2014). The higher the separability value, the better the discrimination.
A value of M b 1 denotes that the histograms overlap between the un-
burned and burned class and the ability to separate the two pixel groups
is poor, while a value of M N 1 represents a good separability.

We overlaid the geo-referenced points of unburned and burn-
killed trees, derived from field inventory data, directly on the bi-tem-
poral WV-2 imagery, and then we manually extracted unburned and
burned pixels of tree crown with high confidence through visual in-
spections (Fig. 4). During this process, 97 black/brown tree crowns
(49 oak and 48 pine) and 73 unburned tree crowns (28 oak and 45
pine) were used. In total, this yielded 495 burned pixels and 505 un-
burned pixels.

3.3. MESMA procedure

Compared with a basic LSMA analysis, MESMA allows the number
and types of endmembers to vary on a per-pixel basis (Roberts et al.,
1998). Specifically, MESMA can be used to estimate image fractions, in
which variable endmember models (e.g. two, three, four or even larger
than four) with different number of endmembers are combined to pro-
duce a single fractionmap, while minimizing per-pixel basis Root Mean
Square Error (RMSE) and maintaining fraction constraints by selecting
the best-fit model for each pixel (Roberts et al., 2015). In this study,
the MESMA procedure consisted of three key steps. First, we developed
a spectral library. Second, we selected the optimal endmembers to form
our final spectral library. Third, we ran MESMA to calculate the fraction
images based on the image endmembers. All of theMESMA-related pro-
cedures in this study were implemented in the Visualization and Image
Processing for Environmental Research (VIPER) tools software package
(Roberts et al., 2007) integrated within ENVI 5.3.
Formula References

NIR2−R
NIR2þR

(Tucker, 1979)

2:5ðNIR2−RÞ
NIR2þ6R−7:5Bþ1

(Huete et al., 2002)

ð1þLÞðNIR2−RÞ
NIR2þRþL

with L = 0.5

(Huete, 1988)

2NIR2þ1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Fig. 4. Ground-truth tree crown points in the field and corresponding onsite digital photos. The background image is the post-fire WV-2 false color image (NIR2-red-green bands) on
September 13, 2012. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.3.1. Spectral library development
Two alternatives exist for developing a spectral library: collection of

image endmembers from the image or using reference endmembers
from other spectral libraries or sources (Settle and Campbell, 1998).
We used image spectra to define endmembers given the simplicity of
obtaining “pure” endmembers with VHR imagery with high confidence
and because they would have the same scale of measurement as the
data. Specifically, following Dudley et al. (2015), based on our knowl-
edge of the study area from our field surveys, we manually defined po-
tential endmembers on the post-fire aerial color ortho-photograph
using a set of uniform georeferenced polygons for each class. The post-
fire WV-2 imagery and color aerial ortho-photos were acquired within
about five months and one month after the fire, respectively. Most
short-term fire effects (e.g. ash, scorched canopy, standing trunk) had
not diminished in the imagery. During this process, we selected at
least one hundred endmembers per class.
3.3.2. Selection of optimal endmembers
Identifying a set of high quality endmembers is a critical stage of

MESMA. Following Quintano et al. (2013) and Fernandez-Manso et
al. (2016), we used the following three criteria to select the most
appropriate endmembers: 1) Count-based Endmember Selection
(CoB) - endmembers modeling the greatest number of the candidate
endmembers within a class are selected (Roberts et al., 2003); 2)
Endmember Average RMSE (EAR) - endmembers producing the lowest
EAR within a class are selected (Dennison and Roberts, 2003); 3) Mini-
mum Average Spectral Angle (MASA) - endmembers having the lowest
spectral angle within a class are selected (Dennison et al., 2004). We
combined these three criteria for final selections. Using EAR, we
selected endmembers producing the least EAR within their class.
WhenMASAwas considered, we chose endmembers having the lowest
spectral angle within a class. When taking CoB into account,
endmembers modeling the greatest number of candidate endmembers
within their class were chosen. In addition, we considered the typical
spectral shape of the candidate endmembers, based on our knowledge
of the study area and spectroscopy.

3.3.3. Spectral unmixing modeling
After selecting the optimal endmembers using the above-mentioned

measures, we grouped them into three different spectral libraries in-
cluding green vegetation (GV), non-photosynthetic vegetation
(NPV) or ash, and soil or other non-vegetation (NV). Shade was
also present in all pixels. We assumed every original post-fire WV-2
pixel can be modeled by a linear combination of these two, three, or
four endmembers. In this study we set the MESMA fraction constraints
at−5 to 105%; maximum allowable shade fraction at 100%; and maxi-
mum allowable RMSE at 0.025. In addition, a threshold of 0.003 change
in RMSE (reflectance units) was selected empirically to determine
whether a two, three, or four-endmember models should be used for
each pixel. In the case of a tied RMSE the model with the lowest RMSE
was used.

3.4. Burn severity classification

A multi-step classification method was applied to map forest burn
severity, using both a ΔSI and MESMA fractions. First, by dividing each
endmember by the total percent of all non-shade endmember in a
pixel, shade-normalization was performed on the fraction images to
suppress the shade fraction and emphasize the relative abundance of
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non-shade endmembers. Secondly, we identified the burned pixels,
using the combination of the targeted Δ SI in Section 3.2 and MESMA
fraction images produced in Section 3.3: a ΔSI from post-fire to pre-
fire indicated canopy loss, the dominant burned effects in a forest eco-
system; MESMA made use of the full spectra to estimate post-fire frac-
tional cover components, directly analogous and scalable to burn
severity definition of this study. Following Quintano et al. (2013) and
the previous separability analysis of SIs, we selected burned pixels
that simultaneously met four conditions: 1) Δ MSAVI was less than a
threshold of −0.08 (see Section 4.1); 2) their NPV fraction was higher
than the average of the image; 3) their GV fraction, excluding a
“grass” and “shrub” endmember, was lower than the average; 4) Pixels
were within the MTBS fire perimeter. Third, we applied the “burned
mask” to the shade-normalized fraction images.

We used a RF approach in our classificationmodel with five hundred
trees to classify three burn severity levels (L, M, and H). RF is a good
choice for our analyses as it is not sensitive to predictormulticollinearity
and able to find the best predictor variables (Speybroeck, 2012). Impor-
tantly, RF is a supervisedmachine learning technique that iswidely used
by the remote sensing community (e.g. Lawrence et al., 2006; Meng et
al., 2012; Meng and Dennison, 2015; Pal, 2005; Yu et al., 2011). As a
non-parametric decision-tree based classifier, RF makes no assumption
about the underlying distribution of the data and corrects the habit of
overfitting of traditional decision treemethods, leading to high accuracy
and robust results (Breiman, 2001). RF has an internal unbiased esti-
mate of the training set error called the out-of-bag (OOB) error
(Breiman, 2001). Our RF classifier was constructed from bootstrapped
samples comprising about two-thirds of the training dataset; training
samples not used in the RF construction were put in the tree classifier
to get a classification. The ratio of the times that a class is not the true
class across all bootstrap iterations is called the OOB error estimation
(Breiman, 2001).

In order to train the trees of the RF, a minimum of eighty pixels per
burn severity level (L (125), M (146), and H (80)) was selected and de-
fined from the 0.10m post-fire aerial color ortho-photos, as ground ref-
erence. As a preliminary analysis, we ran RF classifications for different
combinations of explanatory variables to compare the predictive power
by internal OOB error estimation: ΔMSAVI (28.41%), shade normalized
MESMA fractions (21.03%), and Δ MSAVI plus MESMA fractions
(15.13%). We thus chose to use both the masked shade normalized
fraction images and Δ MSAVI for burn severity classification. After
the classification process, a 3 by 3 median filter was applied to the
RF classified image to remove outliers or impulse-like noises,
which is a common post-classification procedure helpful for increas-
ing the accuracy used in previous MESMA-based burn severity map-
ping studies (Fernandez-Manso et al., 2016; Quintano et al., 2013).

3.5. Accuracy assessment

We assessed the forest burn severity classification in this study at
the sub-crown, crown, and inter-crown scales. For the sub-crown
scale validation, we first generated a minimum of fifty validation
points per class through stratified sampling based on the generated
WV-2 burn severity map. Then, considering the three burn severity
levels (L (131), M (190), and H (50)) as well as unburned class
(136), the generated validation points were defined from the post-
fire 0.10 m color aerial ortho-photos as ground reference (Fig. 1).
The sample unit of validation points is a rectangle of 1 m by 1m. Classi-
fication of each validation point was determined through visual inspec-
tion of the most frequent burn severity class within each rectangle.
Finally, the errormatrix of RF burn severity classificationwas generated.
Overall accuracy (OA), Kappa value, producer's accuracy (PA) (omission
error), and user's accuracy (UA) (mission error) for each class were cal-
culated and reported (Congalton, 1991a; Congalton, 1991b).

For the crown scale validation,wefirst delineated the crownsof each
geo-referenced dominant tree with field measurements and the post-
fire 0.10m color aerial ortho-photos. Similar to the sub-crown scale val-
idation, each dominant tree crown was defined (U (73), L (22), M (37),
andH (74)) through visual inspection of the post-fire 0.10m color aerial
ortho-photos as ground reference by the most frequent burn severity
class within it. The corresponding OA, PA, UA, and kappa value of RF
burn severity classification were also calculated and reported.

For our study we did not have access to GeoCBI plot survey data
within one year following the fire; four years post-fire we conducted
forest inventory survey to estimate long-term burned effects with
twenty 15 m by 15 m fixed-area field plots. However, a strong correla-
tion (R-squared = 0.85) was found between the percentage of black/
brown crowns (an indicator for burn severity) and GeoCBI ratings on
eighty-nine 30 m by 30 m sample plots using Eq. (3) (Veraverbeke et
al., 2012).

GeoCBI ¼ 1:81� Xþ 0:89 ð3Þ

where X is the black/brown tree percentage within a field plot. We di-
rectly applied the Eq. (3) for predicting GeoCBI in this study, as the
same vegetation type (i.e. mixed evergreen and deciduous forests
with well-drained soils) was investigated. Therefore, for the inter-
crown scale validation, we first calculated the black/brown tree per-
centage within each field plot, through the 0.10 m post-fire color aerial
ortho-photos (short-term effects) and forest inventory measurements
four years following the fire (the long-term effects). We then extracted
and calculated the mean values of MESMA image fractions (e.g. GV,
NPV-ash, and soil-NV) and ΔMSAVI within each field plot. We also
calculated the corresponding twenty plot GeoCBI ratings by the
black/brown tree percentage using Eq. (3). Finally, using mean
values of MESMA image fractions and ΔMSAVI, as predictor vari-
ables, wemodeled the GeoCBI ratings of field plots, using an ordinary
least squares (OLS) regression approach. The presence of spatial au-
tocorrelation in plot GeoCBI rating was also verified by global
Moran's I statistics (0.344, p b 0.001). As a result, a spatial filtering
technique was incorporated into the OLS model to deal with the spa-
tial effects (Griffith and Peres-Neto, 2006). Importantly, Meng et al.
(2015) found the spatial filtering technique used in this analysis
had the best performance among several spatial modeling tech-
niques (e.g. spatial autoregressive, spatial filtering, geographically
weighted regression), in terms of efficiency and accuracy. A thresh-
old value of 10 on the variance inflation factor (VIF) was used to de-
termine the multi-collinearity of predictor variables (Craney and
Surles, 2002). Predictor variables showing multi-collinearity were
dropped from the OLS model one by one, with the order of R-squared
contributions, until all multi-collinearity was removed. The larger
variations in plot GeoCBI ratings explained by the final OLS model,
the higher accuracy in predicting the inter-crown scale ground mea-
surements of burn severity from remotely sensed measurements of
VHR data. The OLS regression approach and the spatial filtering tech-
nique were both conducted in R environment (Team, 2013).

In addition, three burn severity levels (L, M, and H) of field plots
were defined, according to the estimated GeoCBI ratings (De Santis &
Chuvieco, 2009a). The unburned class (U) of field plots was defined di-
rectly through visual inspections of the post-fire 0.10 m color aerial
ortho-photos and field measurements. In each group of the GeoCBI-de-
fined plots (15m by 15m fixed-area), the average percentages of pixels
(1m by 1m)dominated by black canopy, brown (non-foliated) canopy,
post-fire green canopy, and unburned canopy were calculated and
reported.

4. Results

4.1. The separability of ΔSI in discriminating burned effects from VHR data

The separability index (M) values for each ΔSI are listed in Table 4.
ΔMSAVI had the highest M value (M = 2.043). Followed by the Δ



Table 4
M index values comparing unburned and burned separability for ΔSI.

ΔSI Separability index values (M)

ΔMSAVI 2.043
ΔSAVI 2.018
ΔEVI 1.182
ΔNDVI 0.166
ΔBAI 0.100
ΔRVI 0.079
ΔRGI 0.067
ΔBR 0.015

Fig. 5. Frequency distributions of burned and unburned extracted tree crown pixels for Δ
MSAVI. The vertical dash lines show a threshold value of−0.08 for discriminating burned
pixels in Section 3.4.
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MSAVI,ΔSAVI andΔEVI both demonstrated high discriminatory power
(M=2.018 andM=1.182, respectively). TheΔNDVI (M=0.166), the
ΔBAI (M= 0.166), the ΔRVI (M= 0.100), the ΔRGI (M= 0.079), and,
especially, the ΔBR (M = 0.015) had very low M values. According to
the ΔSI discrimination results, ΔMSAVI was selected for subsequent
forest burn severity mapping.

To better understand if the performance of ΔSI to discriminate
burned effects depended on tree species, we also calculated the M
values for the targeted ΔSI (ΔMSAVI) by tree species (Table 5). We
found that the sensitivity of ΔSIs did not show a dependency on
tree species (i.e. pine and oak) when using VHR imagery. As a result,
we did not perform forest burn severity analysis on a tree species
basis.

The frequency distributions of burned and unburned tree crown
pixels extracted in Section 3.2 are shown for ΔMSAVI in Fig. 5. Consis-
tent with ΔSI discrimination results, the histograms of burned and un-
burned were well separated and relatively easy to discriminate for
ΔMSAVI (M = 2.043). The frequency distribution of unburned tree
crown pixels waswithin the upper range, comparedwith the frequency
distribution of burned tree crown.
Table 6
MESMA spectral libraries.

Spectral library Endmember name Number of
Endmembers

Number of
Samples
4.2. MESMA procedure

Our GV endmembers include oak, pine, wetland, shrub, and
grass; NPV-ash endmembers include ash and non-photosynthetic
plants; and soil-NV endmember NIR include impervious surface,
soils, waterbody, and cloud (Table 6). Fig. 6 provides some example
endmember spectra derived from the post-fire WV-2 image. For ex-
ample, Fig. 6a shows that, in general, the oak canopies had the
highest reflectance in the NIR followed by grass and shrub canopies,
while pine and wetland areas had the lowest NIR reflectance. We
also found a large range in char/ash reflectance that had a lower al-
bedo than NPV (Fig. 6b); as expected water had the lowest albedo.

Fig. 7 provides our shade-normalized fraction images from the post-
fire WV-2 imagery in 2012. In these images the brighter the pixels the
higher the fraction. GV and NPV-ash fraction images clearly show the
burned effects. Soil-NV fraction images also clearly identify bare soils,
small trails, buildup areas, waterbody, cloud, and small roads. Pixels
contaminated by cloud showhighestmodeling errors on the RMSE frac-
tion imagery. In total, 96.2% of the image pixels were unmixed by
MESMA with 249 models.
Table 5
M index values comparing burned effects separability by tree species for ΔMSAVI.

ΔSI Burned effects-tree species vs.
burned effects-tree species

Separability index values (M)

ΔMSAVI Burned pine vs. unburned pine 1.605
ΔMSAVI Burned oak vs. unburned oak 1.827
ΔMSAVI Unburned oak vs. unburned pine 0.032
ΔMSAVI Burned oak vs. burned pine 0.045
4.3. Burn severity classification

Based on the previously mentioned ΔMSAVI and MESMA fraction
images, the forest burn severitymapwas classified by amulti-step clas-
sificationmethod (Fig. 8). The heterogeneity of the burned area is clear-
ly apparent but, importantly, the overall pattern matches that of the
MTBS map (Fig. 8): some small unburned or low-severity patches
were found to be bordered by largemoderate- to high-severity patches;
especially for the high severity and unburned class, their spatial distri-
butions were more widespread on the WV-2-based map. We found
that the spatial resolution of the Landsat-based MTBS (i.e. 30 m pixel
size) reduced thenumber of burn severity levels it could resolve as com-
pared to the WV-2 imagery. As a result, our WV-2-based ΔMSAVI and
MESMA map displayed more spatial detailed burned effects, fire pat-
terns, and heterogeneity with specific ecological means (i.e. green can-
opies, brown or bald canopies, charred canopies), compared with the
Landsat-based dNBR MTBS map (Fig. 8).
4.4. Accuracy assessment

OA, PA, UA, and Kappa (see Section 3.5) at the sub-crown and
crown scales were calculated, respectively (Table 7). The burn sever-
ity map shows high OA (84%) and Kappa value (0.77) at the sub-
crown scale. Unburned and high-severity classes had high values in
UA (N80%) and PA (N80%), low-severity class had acceptable moder-
ate values in UA (N70% and b80%) and PA (N70% and b80%), while
moderate-severity had unbalanced high values in UA (N80%) and
moderate values in PA (N70% and b80%). The crown scale accuracy
assessment had similar overall performances to the sub-crown
GV Oak 2 680
Pine 2 590
Shrub 2 452
Grass 2 328
Wetland 1 189

NPV-ash Ash 2 190
NPV 2 189

Soil-NV Impervious surface 2 630
Soil 2 236
Waterbody 1 208
Cloud 1 156

Note: GV: green vegetation; NPV: non-photosynthetic vegetation; NV: non-vegetation.



Fig. 6. ExampleWV-2 spectra from the spectral libraries forMESMA. a. GV spectral library;
b. NPV-ash spectral library; c. soil-NV spectral library.
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scale accuracy (OA= 82%; Kappa value= 0.76). Unburned and high-
severity classes had high values in UA (N80%) and PA (N80%); low-
severity class had an acceptable value in PA (75%), but a low value
in UA (50%), caused mainly by the confusion with moderate-severity
class; moderate-severity class had acceptable balanced values in UA
(70%) and PA (75%).

The final OLS model for predicting the plot GeoCBI ratings is shown
as Eq. (4). Mean soil-NV fraction and ΔMSAVI can explain 89% varia-
tions in estimated GeoCBI from twenty 15 m by 15 m fixed-area field
plots. All the predictor variables were significant at 0.05 confidence
level.

Y ¼ −33:179� Soil‐NV−9:555� ΔMSAVIþ 1:013 ð4Þ

where Soil-NV is the mean soil-NV fraction, and ΔMSAVI is the mean
change in MSAVI, calculated from all the valid WV-2 pixels within a
15 m by 15 m fixed-area field plot. GV and NPV-ash fractions were
dropped from the final OLS model, because they both had multi-collin-
earity and less R-squared contributions, compared with ΔMSAVI. Fig. 9
shows the scatterplot of estimated plot GeoCBI and corresponding OLS
model predicted values. The high correlation (Adjusted R-squared =
0.89) shows that remotely sensed measurements at the sub-crown
scale can be used to predicting the inter-crown scale ground measure-
ments of burn severity (e.g. GeoCBI) with high confidence.
Themean percentages of classified pixels (black canopy, brown can-
opy, post-fire green, and unburned canopy) within GeoCBI–defined
plots are summarized and shown in Fig. 10. Canopy class percentages
were significantly different among severity groups from GeoCBI-de-
fined field plots, but indicated a general agreement between satellite
burn severity classification and field plot based results at the inter-
crown scale: the mean percentages of unburned canopy decreased
with severity level, but black and especially brown canopies indicated
an opposite trend. Importantly, it is clear that burn severity mapping
at fine spatial scales from VHR satellite measurements was consistent
with the standard inter-crown scale measurements (GeoCBI). More-
over, consistent with Fig. 8, Fig. 10 indicates the heterogeneity of burn
severity patterns was high at the inter-crown scale. Specifically, except
the unburned group, all four burned effects related canopy classes can
be found in other severity groups. The large standard deviation in the
high severity group also indicated the uncertainty caused by the
GeoCBI-defined burn severity classification.

5. Discussion

Burn severity mapping is critical to the understanding of long term
post-fire recovery trends and ecosystem resilience (Fernandez-Manso
et al., 2016; Morgan et al., 2014; Smith et al., 2016; Wilson et al.,
2015). As a result a number of studies using coarse- to moderate-reso-
lution satellite observations (e.g. 30m Landsat series) have beenwidely
conducted (De Santis and Chuvieco, 2009a; Key and Benson, 2006;
Lentile et al., 2006). Since fire effects can vary at different scales, one
spatial or temporal scale may not be appropriate to address all objec-
tives for assessing burn severity (Morgan et al., 2014). The increased
availability of VHR imagery provides an important opportunity to map
burn severity and monitor post-fire succession at fine spatial scales.
And these fine scale burned effect studies will be useful for a number
of ecological management activities (e.g. Pine Barrens restoration,
ecologically sensitive fire suppression in wildland–urban interface,
Mitri and Gitas, 2013; Pérez-Cabello et al., 2012) and the develop-
ment of consistent and transferable quantifications of burn severity
(e.g. the changed ability of the plant to assimilate carbon by fire)
across spatial scales or fire regimes (Morgan et al., 2014; Smith et
al., 2016). In this study we explored forest burn severity mapping
for the first time using remotely sensed SIs and a set of MESMA frac-
tion imagery (e.g. GV, NPV-ash, and soil-NV) from VHR data in a Pine
Barrens ecosystem.

Our evaluation of the resulting burn-severity map indicated that our
approach not only can be used for forest burn severity mapping at fine
spatial scales from VHR data with reasonable accuracy (Table 7 and
Fig. 9), but also showed that the results were consistent across spatial
scales. As such we observed that VHR data can provide valuable infor-
mation on burned effects from the sub-crown to crown to inter-crown
scales. Furthermore, previous studies indicated that SIs could accurately
quantify changes in plant physiology caused by fire at the leaf level
(Smith et al., 2016; Sparks et al., 2016). Thus burn severity mapping at
fine spatial scales using ΔSI and MESMA fractions can provide not
only more spatial details for informing fire-related ecological studies
andmanagement, but could also provide additional insights on changes
in plant function associated with fire impacts (Morgan et al., 2014;
Smith et al., 2016).

Importantly in this study we found that our results using VHR data
showed much more spatial details than that derived from the Landsat-
based MTBS burn severity product at 30 m (Fig. 8). Heterogeneity in
specific burned effects in these areas cannot be resolved by 30 m
Landsat data (Holden et al., 2010; Arnett et al., 2015; Dragozi et al.,
2016). As a result, the 30 m Landsat pixels usually include a mix of
high, moderate, low burn severity, and unburned areas and the
Landsat-based MTBS burn severity product tends to show comprehen-
sive burned effects at the plot scale (i.e. 30m) by incorporatingmultiple
strata (Cocke et al., 2005; Lentile et al., 2009), leading to a substantial



Fig. 7.MESMA fraction images from the post-fire WV-2 imagery in 2012.
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underestimation of high severity area at the crown scale and the over-
estimation of the area burned at moderate severity in this study
(Fig. 8). Althoughwithmany similarities, the burn severity definition
used for ourWV-2-based burn severity map was also not the same as
the MTBS burn severity product (Eidenshink et al., 2007). These to-
gether make the general spatial pattern in burned effects between
ourWV-2-based and the Landsat-based burn severity map compara-
ble (Fig. 8), but many differences in spatial details. Similarly, during
our field data survey of the burn, we found that heterogeneous re-
growth patterns were apparent within our 15 m by 15 m fixed-area
plots, consistent with heterogeneous patterns of damaged or sur-
vived trees (Cocke et al., 2005). We also observed that some trees
had become standing-dead (i.e. snag) with no sign of recovery (e.g.
no resprout or leaf out) while some oaks resprouted vigorously
from the root crown after being top-killed. In addition, some trees
that experienced crown scorching, particularly pitch pine, were
able to sprout from basal and epicormic buds on the bole and re-
maining branches. In the future, we will explore these detailed re-
covery patterns in more detail for this study area using multi-
sensor G-LiHT imagery. Wewill use this data to explore what varying



Fig. 8. Burn severity maps. a. Landsat dNBR fromMTBS; b.WV-2 ΔMSAVI andMESMA. Non-vegetation pixels (e.g. road, buildup areas, shadow, cloud)weremasked from theWV-2 burn
severitymap (see Section 3.2.1). The data gap on Landsat burn severitymap is due to the scan line corrector failure of enhanced thematicmapper plus of Landsat-7 on thepost-fire imagery
in 2012.
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burned effects actually mean for post-fire recovery, in terms of forest
structure, function, and composition.

Consistent with the recent suggestions by Morgan et al. (2014) to-
wards more ecologically based severity classifications, we directly
established three levels of burn severity, showing actual ecological ef-
fects (e.g. tree mortality, non-foliated/brown canopy) on the post-fire
0.10 m aerial ortho-photos at a relevant spatial scale to trees been dam-
aged. Both MESMA fractions and the targeted ΔSI (i.e. MSAVI) were
found to be useful for mapping burn severity in this study. During the
RF OOB error estimation, MESMA fractions showed lower OOB error
(higher accuracy), compared to ΔSI, because they were analogous to
the definition of burn severity used in this study and made use of the
full post-fire spectra (Lentile et al., 2006; Quintano et al., 2013), rather
than two or three spectral bands; on the other hand, the combination
of ΔSI and MESMA fractions showed the lowest OOB error (highest ac-
curacy), as ΔSI provided additional information on the canopy loss by
fire (Lentile et al., 2006;White et al., 1996). However, the performances
Table 7
Producer Accuracy (PA) (percent) and User Accuracy (UA) (percent) per class of burn se-
verity level, Overall Accuracy (OA), and Kappa coefficient of burn severity level estimates
at the sub-crown and crown scales.

Sub-crown Crown

U L M H U L M H

PA 84 77 79 97 90 75 75 89
UA 89 77 85 84 93 50 70 89
OA 84 82
Kappa 0.77 0.76
of MESMA fractions and Δ SI for mapping burn severity from VHR data
still required more studies in other fire-prone ecosystems or fire re-
gimes, like Mediterranean chaparral and Boreal black spruce ecosys-
tems, considering the differences in fire behaviors and plant traits.
Fig. 9. Scatterplot of plot GeoCBI ratings estimated from the black/brown tree percentage
within field plot and corresponding OLS model predicted values. The adjusted R-squared
of the OLS model for predicting plot GeoCBI ratings is also included. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)



Fig. 10. Mean percentages of canopy class pixels (black canopy (H), brown canopy (M),
post-fire green canopy (L), and unburned canopy (U)) in each severity group from
twenty GeoCBI-defined field plots. Error bars indicate standard deviations. Numbers
along with the severity group indicate the number of field plots included in
corresponding group. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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In our study, we also assessed the separability of multiple SIs in
discriminating burned effects at fine spatial scales in our coastal
Pine Barrens ecosystem. We found that SIs (e.g. MSAVI, SAVI), de-
signed to account for the proportion of background reflectance
from under-canopy (e.g. soil, vegetation, and shadow), tended to
show higher separability (Table 4). These SIs with high discrimina-
tion power also depended on the differences between NIR and red
reflectance values: a noticeable decrease in NIR and red spectral re-
flectance have been detected previously as a result of fire using a
range of imagery (Lentile et al., 2006; Serbin et al., 2013; White et
al., 1996). This conclusion is consistent with Schepers et al. (2014)
and Arnett et al. (2015)’s finding using VHR imagery for assessing
burned effects in heathlands of Europe and a mixed forest of western
Canada, respectively. Compared with other forest disturbances (e.g.
insect herbivory), fire can be a stand-replacing disturbance drastical-
ly affecting the physical, biophysical and spectral properties of the
land surface in the short to long term (e.g. Amiro et al., 2006;
Goulden et al., 2006). Within a reasonably closed forest (LAI N 2),
tree crowns dominate surface reflectance, however following fire
or other disturbances, background effects from under-canopy, such
as increased areal cover of burnt duff, soil exposure, charred residue,
and soil color alteration, can add substantial variations in spectral re-
flectance to remotely sensed imagery, especially at fine spatial scales
(Holden et al., 2010). As a result, SIs (e.g. SAVI and MSAVI), designed
to account for the proportion of background reflectance from under-
canopy, demonstrated better performances in the discrimination of
burned effects than the other traditional SIs (e.g. NDVI) from VHR
imagery (Arnett et al., 2015; Schepers et al., 2014; this study).
Some other SIs were not originally designed to be used for our
study area (e.g. BAI) or for post-fire studies from VHR sensors (e.g.
EVI), and the default convergence values (L) for SIs calculations
were also used without recalibration. But similar to this study,
Holden et al. (2010) and Arnett et al. (2015) adapted EVI for detect-
ing burned effects with relatively high accuracy using VHR sensors.
Fine-tuning of SI calculations could result in improved performance
for discriminating burned effects, but this may come at a cost of
adaptability to other sites and a careful exploration of the need for
tuning is needed but beyond this scope of this study.

Previous studies demonstrated that the performance of SIs for burn
severity assessment depended on vegetation type at both a moderate
resolution (Epting et al., 2005; Hammill and Bradstock, 2006) and
VHR level (Schepers et al., 2014). But our results showed that tree spe-
cies had little effect on the SI separation power, and thus SI from VHR
data can be potentially used as a general method for discriminating
burned areas inmixed forest ecosystems; but these needs further explo-
ration inmore diverse forest ecosystems. The lowerM valueswhen tak-
ing species into account (Table 4 and Table 5) come from the fact that
the error of visual inspection on tree species can bring more extreme
values for species level M calculations (relatively increased standard
deviations).

6. Conclusion

Our study significantly contributes to the continued efforts for
assessing the ecological, management, and policy implications of
forest disturbances and extends our understanding of forest burn
severity assessment at fine spatial scales. Compared with previous
studies using VHR or hyperspectral imagery for assessing burn se-
verity, e.g., (Chen et al., 2015b; Holden et al., 2010; Schepers et al.,
2014), for the first time, we establish a pixel-based approach to
map forest burn severity at fine spatial scales, using the combination
of bi-temporal VHR imagery (i.e. WV-2), post-fire aerial ortho-photos,
and ground survey data. Our results showed that 1) ΔSI, designed to
minimize the effects of background reflectance (e.g. MSAVI and SAVI)
can be effectively used for discriminating burned effects at the sub-
crown scale in a Pine Barrens ecosystem, consistentwith similar studies
in other ecosystem types (Arnett et al., 2015; Schepers et al., 2014). Fur-
thermore, tree species had little effect on its discrimination power; 2)
MESMA fractions from VHR data (i.e. WV-2) had a high predictive
power for mapping forest burn severity with the targeted ΔSI (i.e. Δ
MSAVI); 3) our pixel-wise approach from VHR data (i.e. WV-2) can be
used formapping forest burn severity atfine spatial scales and themap-
ping result is consistent across spatial scales (i.e. from sub-crown to
crown to inter-crown). Future work should explore the use of VHR im-
agery with short-wave-infrared bands (e.g. WorldView-3) which could
produce evenmore accurate post-fire mapping using SI-based method,
however amodified version of NBR accounting for heterogeneous spec-
tral features of burned areas may be needed. Additional studies are
needed to further explore ecologically meaningful ground measure-
ments of burn severity (e.g. tree mortality percentage, live basal area,
diameter of the smallest remaining branches) for remote sensing of
burn severity at fine spatial scales (Morgan et al., 2014); the linkage
and sensitivity of different remotely sensed measurements can thus
be extensively explored across various spatial scales and ecosystems.
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